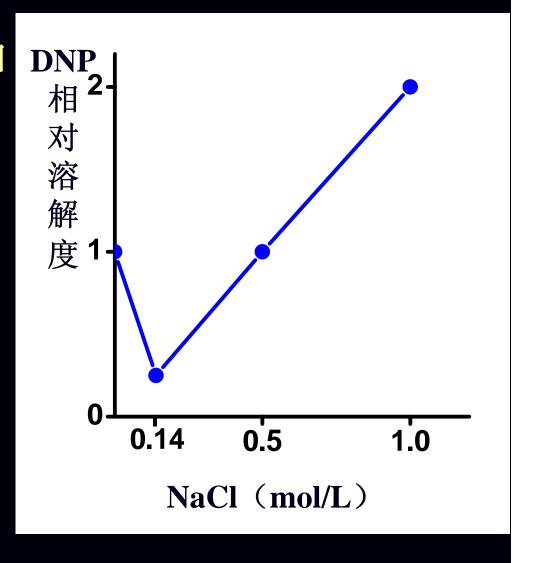
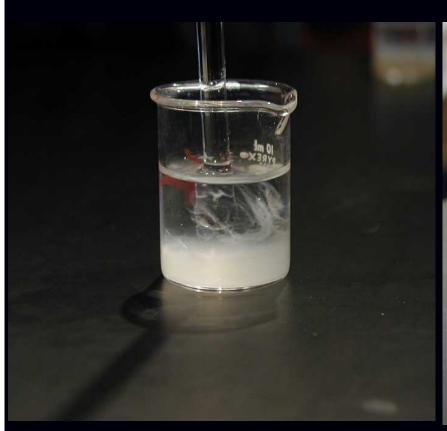
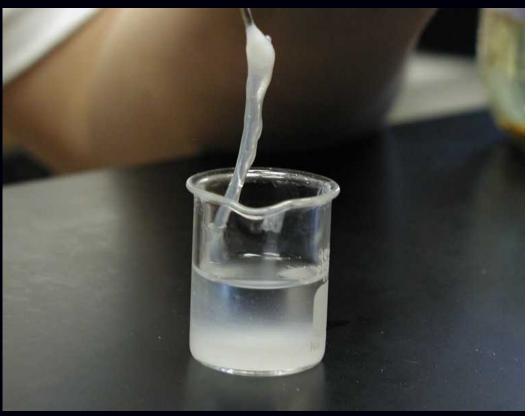
DNA的分离提取及含

量测定

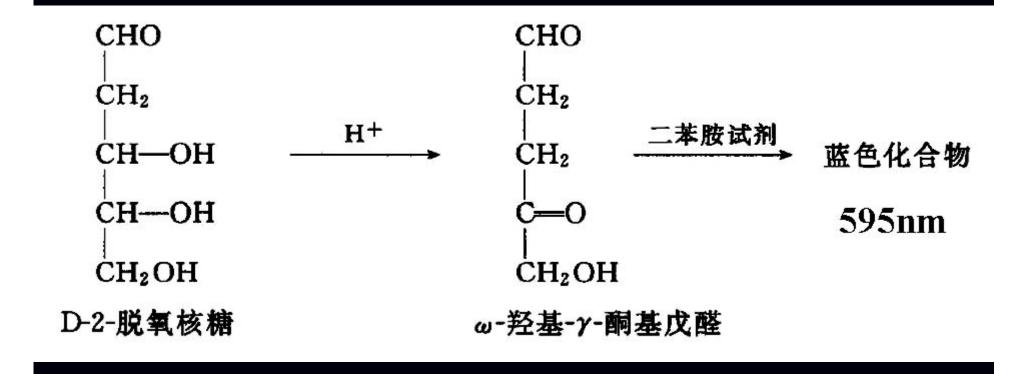

实验目的

- ▶掌握从动物组织中提取DNA的方法
- >学习二苯胺法测定DNA含量的原理和方法

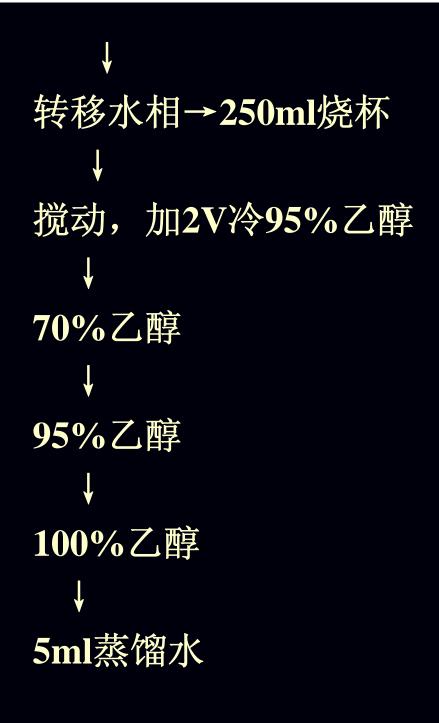

实验原理


- >取材原则: DNA含量高, DNA酶活性低
- >实验条件:避免机械振荡;防止过酸、过碱对磷酸二酯键的破坏;抑制核酸酶:柠檬酸钠、EDTA; SDS
- ➤ 改变盐浓度提取: 0.15mol/LNaCl 沉淀DNP, 1mol/L NaCl溶解DNP, 氯仿振荡抽提去除蛋白质, 乙醇沉淀DNA

真核细胞DNA与蛋白 质结合成核蛋白 (DNP), RNA与蛋白 质结合成RNP,可利用 DNP和RNP在不同浓度 NaCl中溶解度的不同来 分离DNP和RNP。



分离沉淀DNA


DNA含量的测定——二苯胺法

实验操作

```
兔肝200g/班,去脂,剪碎
400ml冷1xSSC, 5', 2-3次
400ml冷1xSSC匀浆1-2°
20ml匀浆液/组(记录实际体积)
离心: 5000rpm, 4℃, 15'
  ↓记录上清体积
```

```
沉淀 + 5V 0.15mol/L NaCl-0.1mol/LNa<sub>2</sub>EDTA
搅拌,滴加5%SDS→1%
搅拌,加固体NaCl→1mol/L
搅拌30′ → NaCl 全溶
等V氯仿/异戊醇(24:1),振荡20°
离心: 5000rpm, 4℃, 15'
```


绘制 DNA的标准工作曲线

试剂	管号					
	1	2	3	4	5	6
DNA标准溶液 (1mg/ml)(ml)	0	0.2	0.4	0.6	0.8	1.0
水(ml)	2	1.8	1.6	1.4	1.2	1.0
DNA的最终浓度 (µg/ml)	0	100	200	300	400	500

- ➤ 向各管中加入4ml二苯胺试剂,混合均匀。
- > 将上述各管放入沸水浴中精确反应10',冷却。
- > 595nm波长下测每管的吸收值。
- 》将各管在595nm下的吸收值对加人的DNA的μg 数作图,应得一条通过零点的直线。

兔肝DNA样品中DNA含量的测定

- ▶ 2ml免肝DNA溶液+ 4ml二苯胺试剂
- ▶沸水浴中精确加热10′,冷却
- 》用管1做空白对照测该管在595nrn下的光吸收值。根据DNA的标准工作曲线,计算所制备的DNA样品中的DNA含量。

$$\mathbf{DNA} = \frac{\mathbf{y} \times \mathbf{N}}{\mathbf{C}} \times 100\%$$

- ▶y——由样品O.D值从标准工作曲线上查得的DNA的量;
- ▶ C——测定所用DNA样品液的毫升数;
- ▶N——DNA样品液的总体积。

思考题

- ➤ 肝细胞的匀浆液(含0.5mol/L氯化钠-0.0l5mol/L 柠檬酸钠,pH7.0)经离心为什么保留沉淀而不要上清液?为什么提取液(如匀浆液)中要加人柠檬酸钠和EDTA?
- ➤ 在DNA制备过程中为什么要加人SDS?
- ➤ 在DNA制备过程中为什么要加人氯仿一异戊醇?
- ➤ 结合本人实际操作的体会,讨论在提取过程中应如何避免大分子DNA的降解和断裂?